El Papel del Estrés Metabólico en la Hipertrofia Muscular. Una Revisión de Alcance

Autores/as

  • Angel Becerra Universidad Nacional Experimental de los Llanos Ezequiel Zamora
  • René de Jesús Viloria Juarez Universidad de Los Andes

Palabras clave:

Entrenamiento de Fuerza, Crecimiento del musculo esqueletico, Fisiologia

Resumen

Objetivos: El propósito de esta revisión fue examinar críticamente el papel del estrés metabólico en la hipertrofia muscular y su capacidad para promover adaptaciones de forma autónoma, en lugar de ser meramente un complemento de la tensión mecánica. Material y Métodos: Se realizó una búsqueda de literatura en las bases de datos PubMed y Taylor & Francis Online, abarcando publicaciones en inglés y español desde 2010 hasta 2025. Resultados: Los hallazgos indican que el estrés metabólico, inducido por protocolos de entrenamiento con descansos breves y altas repeticiones, causa respuestas agudas como la acumulación de lactato, la producción de especies reactivas de oxígeno (ROS), inflamación y aumentos transitorios de hormonas. Sin embargo, estas respuestas no se traducen consistentemente en hipertrofia crónica cuando se aíslan de la tensión mecánica. Discusión: La evidencia sugiere que el estrés metabólico no es un mecanismo primario, sino un mediador que potencia la hipertrofia al facilitar el reclutamiento de fibras musculares de alto umbral mediante la fatiga. Conclusiones: En conjunto, el estrés metabólico no es suficiente para inducir la hipertrofia muscular por sí solo, sino que funciona como un mecanismo complementario que optimiza el crecimiento muscular generado por la tensión mecánica.

Citas

Becerra, A. A. (2025, September 6). El Papel del Estrés Metabólico en la Hipertrofia Muscular: Una Revisión de Alcance. https://doi.org/10.17605/OSF.IO/8YGV6

Coburn, J., y Malek, M. (2016). Manual NSCA: Fundamentos del entrenamiento personal (2da. Ed.). Barcelona, España: Editorial Paidotribo.

Curovic, I. (2025). The role of resistance exercise-induced local metabolic stress in mediating systemic health and functional adaptations: Could condensed training volume unlock greater benefits beyond time efficiency? Frontiers in Physiology, 16, Article 1549609. https://doi.org/10.3389/fphys.2025.1549609

de Freitas, M. C., Gerosa-Neto, J., Zanchi, N. E., Lira, F. S., y Rossi, F. E. (2017). Role of metabolic stress for enhancing muscle adaptations: Practical applications. World journal of methodology, 7(2), 46–54. https://doi.org/10.5662/wjm.v7.i2.46

Duchateau, J., Semmler, J. G., y Enoka, R. M. (2006). Training adaptations in the behavior of human motor units. Journal of applied physiology (Bethesda, Md. : 1985), 101(6), 1766–1775. https://doi.org/10.1152/japplphysiol.00543.2006

Flewwelling, L. D., Hannaian, S. J., Cao, V., Chaillou, T., Churchward-Venne, T. A., y Cheng, A. J. (2025). What are the potential mechanisms of fatigue-induced skeletal muscle hypertrophy with low-load resistance exercise training? American Journal of Physiology-Cell Physiology, 328(C1001–C1014). https://doi.org/10.1152/ajpcell.00266.2024

Folland, J; y Williams, A. (2007). Morphological and Neurological Contributions to Increased Strength. Sports Medicine, 37(2), 145-168. https://doi.org/10.2165/00007256-200737020-00004

Grgic J. (2020). The Effects of Low-Load Vs. High-Load Resistance Training on Muscle Fiber Hypertrophy: A Meta-Analysis. Journal of human kinetics, 74, 51–58. https://doi.org/10.2478/hukin-2020-0013

Grgic, J. (2023). No Pain, No Gain? Examining the Influence of Ibuprofen Consumption on Muscle Hypertrophy. Strength and Conditioning Journal, 45(4), 481–485. https://doi.org/10.1519/SSC.0000000000000747

Grgic, J., Lazinica, B., Mikulic, P., Krieger, J. W., y Schoenfeld, B. J. (2017). The effects of short versus long inter-set rest intervals in resistance training on measures of muscle hypertrophy: A systematic review. European journal of sport science, 17(8), 983–993. https://doi.org/10.1080/17461391.2017.1340524

Grgic, J., Schoenfeld, B. J., Orazem, J., y Sabol, F. (2022). Effects of resistance training performed to repetition failure or non-failure on muscular strength and hypertrophy: A systematic review and meta-analysis. Journal of sport and health science, 11(2), 202–211. https://doi.org/10.1016/j.jshs.2021.01.007

Haddaway, N. R., Page, M. J., Pritchard, C. C., & McGuinness, L. A. (2022). PRISMA2020: An R package and Shiny app for producing PRISMA 2020-compliant flow diagrams, with interactivity for optimised digital transparency and Open Synthesis Campbell Systematic Reviews, 18, e1230. https://doi.org/10.1002/cl2.1230

Henselmans, M., y Schoenfeld, B. J. (2014). The effect of inter-set rest intervals on resistance exercise-induced muscle hypertrophy. Sports medicine (Auckland, N.Z.), 44(12), 1635–1643. https://doi.org/10.1007/s40279-014-0228-0

Hirono, T., Ikezoe, T., Taniguchi, M., Tanaka, H., Saeki, J., Yagi, M., Umehara, J., y Ichihashi, N. (2022). Relationship Between Muscle Swelling and Hypertrophy Induced by Resistance Training. Journal of strength and conditioning research, 36(2), 359–364. https://doi.org/10.1519/JSC.0000000000003478

Kraemer, W. J., Ratamess, N. A., y Nindl, B. C. (2017). Recovery responses of testosterone, growth hormone, and IGF-1 after resistance exercise. Journal of applied physiology (Bethesda, Md. : 1985), 122(3), 549–558. https://doi.org/10.1152/japplphysiol.00599.2016

Lacio, M., Vieira, J. G., Trybulski, R., Campos, Y., Santana, D., Filho, J. E., Novaes, J., Vianna, J., y Wilk, M. (2021). Effects of Resistance Training Performed with Different Loads in Untrained and Trained Male Adult Individuals on Maximal Strength and Muscle Hypertrophy: A Systematic Review. International journal of environmental research and public health, 18(21), 11237. https://doi.org/10.3390/ijerph182111237

Lasevicius, T., Ugrinowitsch, C., Schoenfeld, B. J., Roschel, H., Tavares, L. D., De Souza, E. O., Laurentino, G., y Tricoli, V. (2018). Effects of different intensities of resistance training with equated volume load on muscle strength and hypertrophy. European journal of sport science, 18(6), 772–780. https://doi.org/10.1080/17461391.2018.1450898

Liegnell, R., Apró, W., Danielsson, S., Ekblom, B., van Hall, G., Holmberg, H. C., y Moberg, M. (2020). Elevated plasma lactate levels via exogenous lactate infusion do not alter resistance exercise-induced signaling or protein synthesis in human skeletal muscle. American journal of physiology. Endocrinology and metabolism, 319(4), E792–E804. https://doi.org/10.1152/ajpendo.00291.2020

Lilja, M., Mandić, M., Apró, W., Melin, M., Olsson, K., Rosenborg, S., Gustafsson, T., y Lundberg, T. R. (2018). High doses of anti-inflammatory drugs compromise muscle strength and hypertrophic adaptations to resistance training in young adults. Acta physiologica (Oxford, England), 222(2), 10.1111/apha.12948. https://doi.org/10.1111/apha.12948

Lixandrão, M. E., Ugrinowitsch, C., Berton, R., Vechin, F. C., Conceição, M. S., Damas, F., Libardi, C. A., y Roschel, H. (2018). Magnitude of Muscle Strength and Mass Adaptations Between High-Load Resistance Training Versus Low-Load Resistance Training Associated with Blood-Flow Restriction: A Systematic Review and Meta-Analysis. Sports medicine (Auckland, N.Z.), 48(2), 361–378. https://doi.org/10.1007/s40279-017-0795-y

Loenneke, J; Pujol, T. (2009). The Use of Occlusion Training to Produce Muscle Hypertrophy. Strength and Conditioning Journal 31(3), 77-84. DOI: 10.1519/SSC.0b013e3181a5a352

McKendry, J., Pérez-López, A., McLeod, M., Luo, D., Dent, J. R., Smeuninx, B., Yu, J., Taylor, A. E., Philp, A., y Breen, L. (2016).

Short inter-set rest blunts resistance exercise-induced increases in myofibrillar protein synthesis and intracellular signalling in young males. Experimental physiology, 101(7), 866–882. https://doi.org/10.1113/EP085647

Nalbandian, M., y Takeda, M. (2016). Lactate as a Signaling Molecule That Regulates Exercise-Induced Adaptations. Biology, 5(4), 38. https://doi.org/10.3390/biology5040038

Ozaki, H., Abe, T., Mikesky, A. E., Sakamoto, A., Machida, S., y Naito, H. (2015). Physiological stimuli necessary for muscle hypertrophy. The Journal of Physical Fitness and Sports Medicine, 4(1), 43-51. https://doi.org/10.7600/jpfsm.4.43

Paulsen, G., Hamarsland, H., Cumming, K. T., Johansen, R. E., Hulmi, J. J., Børsheim, E., Wiig, H., Garthe, I., y Raastad, T. (2014). Vitamin C and E supplementation alters protein signalling after a strength training session, but not muscle growth during 10 weeks of training. The Journal of physiology, 592(24), 5391–5408. https://doi.org/10.1113/jphysiol.2014.279950

Robergs, R. A., Ghiasvand, F., y Parker, D. (2004). Biochemistry of exercise-induced metabolic acidosis. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 287(3), R502–R516. https://doi.org/10.1152/ajpregu.00114.2004

Schoenfeld B. J. (2010). The mechanisms of muscle hypertrophy and their application to resistance training. Journal of strength and conditioning research, 24(10), 2857– 2872. https://doi.org/10.1519/JSC.0b013e3181e840f3

Schoenfeld B. J. (2013). Potential mechanisms for a role of metabolic stress in hypertrophic adaptations to resistance training. Sports medicine (Auckland, N.Z.), 43(3), 179–194. https://doi.org/10.1007/s40279-013-0017-1

Schoenfeld, B. (2021). Science and Development of Muscle Hypertrophy. Human Kinetics

Schoenfeld, B. J., Grgic, J., Ogborn, D., y Krieger, J. W. (2017). Strength and Hypertrophy Adaptations Between Low- vs. High-Load Resistance Training: A Systematic Review and Meta-analysis. Journal of strength and conditioning research, 31(12), 3508–3523. https://doi.org/10.1519/JSC.0000000000002200

Schoenfeld, B. J., Ogborn, D., Piñero, A., Burke, R., Coleman, M., y Rolnick, N. (2023). Fiber-Type-Specific Hypertrophy with the Use of Low-Load Blood Flow Restriction Resistance Training: A Systematic Review. Journal of functional morphology and kinesiology, 8(2), 51. https://doi.org/10.3390/jfmk8020051

Schoenfeld, B. J., Pope, Z. K., Benik, F. M., Hester, G. M., Sellers, J., Nooner, J. L., Schnaiter, J. A., Bond-Williams, K. E., Carter, A. S., Ross, C. L., Just, B. L., Henselmans, M., y Krieger, J. W. (2016). Longer Interset Rest Periods Enhance Muscle Strength and Hypertrophy in Resistance-Trained Men. Journal of strength and conditioning research, 30(7), 1805–1812. https://doi.org/10.1519/JSC.0000000000001272

Singer, A., Wolf, M., Generoso, L., Arias, E., Delcastillo, K., Echevarria, E., Martinez, A., Androulakis Korakakis, P., Refalo, M. C., Swinton, P. A., y Schoenfeld, B. J. (2024). Give it a rest: a systematic review with Bayesian meta-analysis on the effect of inter-set rest interval duration on muscle hypertrophy. Frontiers in sports and active living, 6, 1429789. https://doi.org/10.3389/fspor.2024.1429789

Stragier, S., Duchateau, J., Cotton, F., Smet, J., Wolff, F., Tresnie, J., y Carpentier, A. (2025). Effect of Metabolic Stress to High-Load Exercise on Muscle Damage, Inflammatory and Hormonal Responses. Sports, 13(4), 111. https://doi.org/10.3390/sports13040111

Suga, T., Okita, K., Morita, N., Yokota, T., Hirabayashi, T., Horiuchi, M., Takada, S., Omokawa, M., Kinugawa, S., y Tsutsui, H. (2009). Intramuscular metabolism during low-intensity resistance exercise with blood flow restriction. Journal of Applied Physiology, 106(4), 1119–1124. https://doi.org/10.1152/japplphysiol.90368.2008

Tricco, A. C., Lillie, E., Zarin, W., O'Brien, K. K., Colquhoun, H., Levac, D., Moher, D., Peters, M. D. J., Horsley, T., Weeks, L., Hempel, S., Akl, E. A., Chang, C., McGowan, J., Stewart, L., Hartling, L., Aldcroft, A., Wilson, M. G., Garritty, C., Lewin, S., … Straus, S. E. (2018). PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Annals of internal medicine, 169(7), 467–473. https://doi.org/10.7326/M18-0850

Van Every, D. W., D'Souza, A. C., y Phillips, S. M. (2024). Hormones, Hypertrophy, and Hype: An Evidence-Guided Primer on Endogenous Endocrine Influences on Exercise-Induced Muscle Hypertrophy. Exercise and sport sciences reviews, 52(4), 117–125. https://doi.org/10.1249/JES.0000000000000346

Viecelli, C., y Aguayo, D. (2022). May the Force and Mass Be With You—Evidence-Based Contribution of Mechano-Biological Descriptors of Resistance Exercise. Front. Physiol. 12:686119. https://doi.org/10.3389/fphys.2021.686119

West, D. W., Kujbida, G. W., Moore, D. R., Atherton, P., Burd, N. A., Padzik, J. P., De Lisio, M., Tang, J. E., Parise, G., Rennie, M. J., Baker, S. K., y Phillips, S. M. (2019). Resistance exercise-induced increases in putative anabolic hormones do not enhance muscle protein synthesis or intracellular signalling in young men. The Journal of physiology, 587(Pt 21), 5239–5247. https://doi.org/10.1113/jphysiol.2009.177220

Westerblad, H., Allen, D. G., y Lännergren, J. (2002). Muscle fatigue: Lactic acid or inorganic phosphate the major cause? News in Physiological Sciences, 17, 17–21. https://doi.org/10.1152/physiologyonline.2002.17.1.17

Descargas

Publicado

2025-10-13

Cómo citar

Becerra, A., & Viloria Juarez , R. de J. (2025). El Papel del Estrés Metabólico en la Hipertrofia Muscular. Una Revisión de Alcance. Revista Con - Ciencias Del Deporte, 5(1), 133-155. Recuperado a partir de http://revistas.unellez.edu.ve/index.php/rccd/article/view/3001

Número

Sección

Artículos de Revisión