
5

Acta Apuroquia Vol.2 (1):5-13, 2010
© Unellez, Barinas, Venezuela.
ISSN 1836-9056

A MODEL FOR DESIGNING RULE-BASED EXPERT SYSTEMS

Gabriel Carrillo
1

Universidad Nacional Experimental de los Llanos occidentales Ezequiel Zamora. Vice-rectorado de Planificación y de
Desarrollo Regional, Programa de Ciencias Sociales, San Fernando 7001, Estado Apure, Venezuela.

e-mail: gacs2006@gmail.com

ABSTRACT
The aim of this research is to develop a model for designing rule-based expert systems that uses the
forward chaining method of inference. The striking aspect of this model is that the inference engine is
based on a simple representation of rules and facts in relational database tables. Rules are
decomposed and represented in tables at two levels, which allow the developing of expert systems in
any programming language that supports SQL. The explanation facility uses tables containing the
explanations of the result of each rule. The model proposed in this paper is based on a simple
approach to represent facts and rules in relational database tables. The advantage of this model lies in
focusing the design of rule-based expert systems toward knowledge representation in a database,
reducing effort and programming difficulties.

Key Words: Expert system, rule-based expert system, forward chaining.

RESUMEN
El fin de esta investigación es desarrollar un modelo para diseñar sistemas expertos basados en
reglas que usa el método de inferencia de encadenamiento hacia delante. El aspecto resaltante de
este modelo es la base de conocimientos, la cual está basada en una representación simple de reglas
y hechos en tablas de base de datos relacional. Las reglas son descompuestas y representadas en
tablas a dos niveles, lo cual permite el desarrollo de sistemas expertos en cualquier lenguaje de
programación que soporte SQL. El mecanismo de explicación utiliza tablas que contienen las
explicaciones al resultado de cada regla. El modelo propuesto en esta investigación se basa en un
enfoque simple para representar hechos y reglas en tablas de base de datos. La ventaja de este
modelo es enfocar el esfuerzo del diseño de sistemas expertos basados en reglas hacia la
representación del conocimiento en una base de datos relacional, con lo cual el esfuerzo y dificultad
de programación se reducen considerablemente.

Palabras claves: Sistemas expertos basados en reglas, encadenamiento hacia delante.

Recibido: 13/04/2009 Aceptado: 19/09/2009



6

INTRODUCTION
An Expert System is a knowledge-

based information system that uses its
knowledge about a specific, complex
application area to act as an expert consultant
to end users (O’Brien, 2001).

The symbolic reasoning of an expert
system enables it to draw conclusion from
premises and to provide explanations. Expert
system technology is based on the domain
knowledge of the problem being addressed. A
problem domain defines the objects,
properties, tasks and events within which a
human expert works, and the heuristics that
experienced professionals have learned to use
perform better.

The components of an expert system
are (O’Brien, op.cit.): Knowledge base and
inference engine. Additional there can be a
user interface and an explanation facility. The
knowledge base contains facts about a specific
subject and heuristics that express the
reasoning procedures of an expert. The
inference engine processes the rules and facts
related to a specific problem. Two methods are
used for making inferences: forward chaining
(reaching a conclusion by applying rules to
facts) and backward chaining (justifying a
proposed conclusion by determining if it results
from applying rules to facts). The user interface
allow user to interact with the expert systems.
The explanation facility allows the system to
explain its reasoning to the user.

Expert systems have been traditionally
built using programming languages like LISP,
PROLOG, C, C++ and Java, or with
development tools, such as expert systems
shells, like Clips (Giarratano and Riley, 2004).
With those software tools, most expert systems
have been developed, considering its rich set
of instructions and data structure support. The
aim of this research paper is to develop a
model for designing rule-based expert systems
that uses the forward chaining method of
inference. The most important aspect of this
model is that the inference engine is based on
a simple representation of rules and fact in
database tables. Rules are decomposed and
represented in tables at two levels, which gives
the possibility of developing expert systems in
any programming language that supports SQL.

METHODS
Rule-based Expert Systems
Rule-based programming is one of the most
commonly used techniques for developing
expert systems. A rule-based expert system
consists of a set of rules that can be repeatedly
applied to a collection of facts. The following
concepts are essential to rule-based systems
(Clancey, 1981):
- Facts represent circumstances that describe
a certain situation in the real world.
- Rules represent heuristics that define a set of
actions to be executed in a given situation.

Production rules have the pattern if
<condition> then <action>. It consists of
producing practical consequences from certain
conditions. Rules are composed of an if portion
and a then portion. The if portion of a rule the
left hand side (LHS), is called predicates or
premises. The LHS consists of an expression,
which can be a single expression (an individual
fact that must be true for applying the rule) or a
series of expressions (composite expression).
In the literature of rule-based languages, a
single expression is usually called pattern. A
composite expression consists of several
single expressions connected together by
using the conditional elements “and, or, not” in
order to create complex rules.

Inference engines consist of all the
procedures that handle the knowledge base in
order to achieve a conclusion (Nilsson, 1998).
Inference engines are usually coded in such
languages as LISP, PROLOG, C, C++, Java.

Architecture of Rule-based Expert Systems
The general architecture for rule-based

expert system is depicted in Fig 1. The main
elements of a rule-based system are facts,
rules, and the engine that acts on them. The
core of the architecture shown in Fig 1.
consists of the working memory (fact base), the
rule base (knowledge base) and the inference
engine (rule engine).

Carrillo (2010) A Model for designing rule-based expert systems

Acta Apuroquia Vol.2 (1):5-13, 2010



7

Figure 1. General architecture for a rule-based
expert system.

- The working memory contains facts that are
the smallest piece of information supported by
the rule engine.

- The rule base contains rules in the form of if-
then statements, which represent the
knowledge provided by the user and/or an
expert of the problem domain;

-The inference engine matches facts in the
working memory against rules in the rule base,
and it determines which rules are applicable
according to the reasoning method adopted by
the engine.

Figure 2. Procedure to develop a rule-based
expert system.

Production rules

Knowledge in an expert system can be
represented with a Production rules (Lewis,
2003). A production system consists of 3
items: A set of production rules, a working
memory and an interpreter.

The structure of production rules can be
formally stated as follows:

if <condition> then <conclusion>
or

if <condition> then <action>

Productions have two parts
Sensory precondition (“IF” part)
Action (“THEN” part)

When the state of the ‘world’ matches the IF
part, the production is fired, meaning the action
is executed. So production rules link facts (“IF”
parts, also called antecedents) to conclusions
(“THEN” parts, also called consequents).

RESULTS

Rule-based expert systems use forward
chaining or backward chaining as inference
method to achieve a conclusion. A simple
model of forward chaining is the following:

If A and B or C then X;

If D or E then Y;

If X and Y then Z;

The proposed model (Gabing model)
represents rules to which the forward chaining
method will be applied, according to two
aspects: Representation and decomposition.

Representation

Rules are represented according to the
following schema:

- Each rule is made of elements related by
logical connectors (and, or).

- Each rule is represented by a row in a
relational table.

- A rule made of n elements connected by ‘or’
is represented by n rows in a relational
table, each row containing a single
element.

Carrillo (2010) A Model for designing rule-based expert systems

Acta Apuroquia Vol.2 (1):5-13, 2010



8

- A rule made of n elements connected by
‘and’ is presented by n row in a relational
table, each row containing a single
element and a connecting field with a
‘AND’ value.

- Elements in a rule belong are selected from
a ‘attributes’ relational table.

- Each row in the ‘attributes’ table represents
a attributes associated to a rule.

- The rules are applied to subjects. A subject
that meets at least a rule, is selected and
included in the conclusions.

- A subject represents real or abstract
objects.

- Attributes associated to a subject are
represented in a table.

- The data types used in rule representation
are: varchar and float.

Decomposition

Decomposition is a technique whereby
you can decompose a rule into simple pieces.
The set of pieces are equivalent to the original

rule. The decomposition procedure is the
following:

(i) A rule is represented by a set of rule
pieces.

(ii) A rule and the equivalent set of rule
pieces have the same identification, i.e.,
a field identifying the rule.

(iii) Each rule piece contains only and only
one logical expression, and a logical
connector

(iv) The allowed values of the logical
connector are: ‘AND’ and ‘NULL’.

(v) An ‘AND’ logical connector in the original
rule is mapped to ‘AND’ in the rule piece.

(vi) An ‘OR’ logical connector in the original
rule is mapped to a new rule piece.

Creating a set of rule pieces

In table 1, examples of rule are
represented by a new set of pieces

.

Table 1: Equivalent set of rules

Rule1 If a Rule1 A NULL LR1

Rule2 A AND NULLRule2 If a AND b
Rule2 B NULL LR2
Rule3 A NULL LR3ARule3 If a OR b
Rule3 B NULL LR3B
Rule4 A AND NULL
Rule4 B AND NULL
Rule4 C NULL LR4
Rule5 A AND NULL
Rule5 B NULL LR5A

Rule4 If a AND b AND c

Rule5 C NULL LR5B
Rule6 A NULL LR6A
Rule6 B AND NULL

Rule6 If a OR b AND c

Rule6 C NULL LR6B

Id Expre
ssion

Id Expres
sion

Opera
tor

Link

Carrillo (2010) A Model for designing rule-based expert systems

Acta Apuroquia Vol.2 (1):5-13, 2010



9

A complex rule must be decomposed
into smaller and simpler rules. For example:

Rule 1: If (a AND b) or (c AND d) is
equivalent to:

Rule1 : a AND

Rule1: b NULL LinkA

Rule1: c AND

Rule1: d NULL LinkB

Architecture for the Gabing model

The Gabing model for rule-based expert
systems is made of the following elements:

- A database containing the rules and data
about objects.

- An inference engine for manipulating rules
and data about objects to achieve a
conclusion.

- An explanation mechanism.

The database contains the following tables:

- Attributes: definition of attributes used in
rules and facts (Table 3).

- Rules: definition of each rule (Table 4)..

- Rule_detail: list of rule details associated
to a rule. Each detail entry contains a
logical connector to the following detail
entry. The data item is associated to an
attribute (Table 5)..

- Rule_link: For combining intermediate
results of a rule, with logical operators
AND, OR (Table 6)..

- Explain: explanation associated to each
rule that has been fired (Table 7 and 8)..

- Object: Contain data about facts, persons,
object that are manipulated in the expert
system. Conclusions are bound to objects
(Tables 9, 10,11,12 and 13)..

- Object_detail: list of details associated to
an object. Each detail entry contains a
logical connector to the following detail
entry. The data item is associated to an
attribute(Table 10)..

The data base schema for the Gabing model is
shown in Annex A.

DISCUSSION

In order to understand the application of
the Gabing model, we present a case where it
can be applied. Let us suppose the human
resources office of a company needs an expert
system to recruitment according to the
following profiles:

- Software engineers less than 30 years old,
experienced with PHP.

- Software engineers with master degree
and research experience.

The rules can be represented as follows:

Table 2: group
id_group name_group

1 Information Technology

Table 3: attribute
id_attr name_attr type_attr

1 Bachelor degree Varchar
2 Master Degree Varchar
3 PHP experience Float
4 Research experience Float
5 Age Float
6 English language Varchar
7 French language Varchar

Table 4: rules:

id_rule Id_group Name_rule id_explain
RIT01 1 Software engineers less than 30 years old, experienced with PHP 1
RIT02 1 Software engineers with master degree and research experience 1

Carrillo (2010) A Model for designing rule-based expert systems

Acta Apuroquia Vol.2 (1):5-13, 2010



10

Table 5: rule_detail

id_ruledetail Id_rule name_ruledetail id_attrib rel_op vardata floatdata l_op Rlink
1 RIT01 Software

engineer
1 = Software

engineering
AND NULL

2 RIT01 AGE < 30 5 < 30 AND NULL

3 RIT01 PHP > 1 3 > 1 NULL LR1

4 RIT02 Software
engineer

1 = Software
engineering

AND NULL

5 RIT02 Master degree 2 = M.Sc. AND NULL

6 RIT02 Research 3 = Research NULL LR2

Table 6: Table rule_link

id_rulelink Rulelink Operator id_explain
1 LR1 NULL 1
2 LR2 NULL 2

Table 7: Table explain

id_explain name_explain
1 Successful selection for Software engineers less than 30 years old, experienced with PHP.

Rule RIT01.
2 Successful selection for Software engineers with master degree and research experience. Rule

Rit02.

The personal data of the applicants can be stored in the object table. The category should be
applicants.

Table 8: Table categories

id_cat name_cat
1 Applicants

Table 9: objects

id_object Id_cat name_object
D0058792 1 GABRIEL CARRILLO
D0054865 1 MARKUS KOGAN
D0034986 1 MARIE LAGARD

Table 10: object_detail

id_objectdetail id_object id_attrib rel_operator Vardata floatdata
1 D0058792 1 = Software engineer
2 D0058792 2 = Master Degree
3 D0058792 3 = 3
4 D0058792 4 = 2
5 D0058792 6 = GOOD
6 D0054865 1 = Software engineer
7 D0054865 5 = 27
8 D0034986 1 = Software engineer
9 D0034986 2 = Master Degree

Carrillo (2010) A Model for designing rule-based expert systems

Acta Apuroquia Vol.2 (1):5-13, 2010



11

A complex rule can be decomposed and represented with the Gabing model. Let us suppose
that we are given the following rule: IF (A AND B OR C) OR (D AND E) By decomposing this rule, we
get:

Table 11: rules

id_rule Id_group Name_rule id_explain
R01 1 IF (A AND B OR C) OR (D AND E) 1

Table 12: rule_detail

id_ruledetail Id_rule name_ruledetail id_attrib rel_op vardata floatdata l_op rlink
1 R01 A 1 = Text A AND NULL

2 R01 B 1 = Text B NULL LR1A

3 R01 C 1 = Text C NULL LR1B

4 R01 D 1 = Text D AND NULL

5 R01 E 1 = Text E NULL LR1C

Table 13: rule_link

id_rulelink Rulelink Operator id_explain
1 LR1A OR 1
2 LR1B OR 1
3 LR1C NULL 1

The inference engine can be coded in
any programming language that supports SQL.
The user interface must allow for entry of all
data required by the expert system.

Handling data types

The Gabing model supports varchar
and float data types (Table 14). Other types
must be converted to the most convenient of
the supported types. We recommend the
following transformations:

Table 14: Data type conversion

Original data type New data type
Char, Varchar, String Varchar
Date Varchar in format: YYYYMMDD
Float m,n Float m,n
Integer n Float n,0
Logical Float

1,0.
True=
1,
False
=0

Carrillo (2010) A Model for designing rule-based expert systems



12

CONCLUSIONS

Rule-based systems emulate human
expertise in well-defined problem domains by
using a knowledge base expressed in terms of
rules. In this paper we have shown a model for
designing rule-based expert systems, with an
approach that represents rules in relational
tables, with decomposition at two levels.

This work is the result of an effort to
develop a model for designing rule-based
expert systems. This approach shifts the load
from the algorithm to the knowledge base, with
the aim of facilitating expert system design and
programming.

REFERENCES
Clancey, W. 1981. The Epistemology of a

Rule-based Expert System: A framework for
explanation. Department of Computer
Science. Stanford University, Stanford.
Available:

ftp://reports.stanford.edu/pub/cstr/reports/cs/
tr/81/896/CS-TR-81-896.pdf.

Giarratano, J. ; Riley, G. 2004. Expert Systems
Principles and Programming. Fourth Ed.,
Course Technology, Boston.

Lewis, P. 2003. Knowledge Representation.
Production rules for knowledge
representation. [Online document].
Available:
http://users.ecs.soton.ac.uk/phl/ctit/ho1/nod
e2.html.

Nilsson, N. 1998. Artificial Intelligence; A new
synthesis. Mogan Kaufmann Publishers.
San Francisco.

O’Brien, J.A. 2001. Sistemas de Información
Gerencial. Irwin MacGraw-Hill.

ANNEX A
Database schema for the Gabing Model

-- Database: `gabingesdb`

CREATE TABLE `attributes` (
`id_attr` int(6) NOT NULL auto_increment,
`name_attr` varchar(100) NOT NULL,
`type_attr` varchar(10) NOT NULL,
PRIMARY KEY (`id_attr`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1 AUTO_INCREMENT=1 ;

CREATE TABLE `categories` (
`id_cat` int(6) NOT NULL auto_increment,
`name_cat` varchar(100) NOT NULL,
PRIMARY KEY (`id_cat`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1 AUTO_INCREMENT=1 ;

CREATE TABLE `explain` (
`id_explain` int(6) NOT NULL auto_increment,
`name_explain` text NOT NULL,
PRIMARY KEY (`id_explain`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1 AUTO_INCREMENT=1 ;

CREATE TABLE `group` (
`id_group` int(6) NOT NULL auto_increment,
`name_group` varchar(100) NOT NULL,
PRIMARY KEY (`id_group`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1 AUTO_INCREMENT=1 ;

Carrillo (2010) A Model for designing rule-based expert systems

Acta Apuroquia Vol.2 (1):5-13, 2010



13

CREATE TABLE `object` (
`id_object` varchar(15) NOT NULL,
`id_cat` int(6) NOT NULL,
`name_object` varchar(120) NOT NULL,
PRIMARY KEY (`id_object`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

CREATE TABLE `object_detail` (
`id_objectdetail` int(6) NOT NULL auto_increment,
`id_object` varchar(15) NOT NULL,
`id_attrib` int(6) NOT NULL,
`relation_operator` varchar(3) NOT NULL,
`vardata` varchar(100) NOT NULL,
`floatdata` float(15,4) NOT NULL,
PRIMARY KEY (`id_objectdetail`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1 AUTO_INCREMENT=1 ;

CREATE TABLE `rules` (
`id_rule` varchar(15) NOT NULL,
`id_group` int(6) NOT NULL,
`name_rule` varchar(120) NOT NULL,
`id_explain` int(6) NOT NULL,
PRIMARY KEY (`id_rule`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

CREATE TABLE `rule_detail` (
`id_ruledetail` int(8) NOT NULL auto_increment,
`id_rule` varchar(15) NOT NULL,
`name_ruledetail` varchar(100) NOT NULL,
`id_attrib` int(6) NOT NULL,
`relation_operator` varchar(3) NOT NULL,
`vardata` varchar(100),
`floatdata` float(15,4),
`logical_link` varchar(5) NOT NULL,
`rule_link` varchar(15) NOT NULL,
PRIMARY KEY (`id_ruledetail`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1 AUTO_INCREMENT=1 ;

CREATE TABLE `rule_link` (
`id_rulelink` int(6) NOT NULL auto_increment,
`id_rule` varchar(15) NOT NULL,
`logical_link` varchar(5) NOT NULL,
`id_explain` int(6) NOT NULL,
PRIMARY KEY (`id_rulelink`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1 AUTO_INCREMENT=1 ;

Carrillo (2010) A Model for designing rule-based expert systems

Acta Apuroquia Vol.2 (1):5-13, 2010

Acta Apuroquia Vol.2 (1):5-13, 2010



14


